
会员
工业4.0:智能制造与治理革命
陈潭等更新时间:2019-01-04 17:13:46
最新章节:内容简介开会员,本书免费读 >
创新是引领发展的第一动力。建设创新型国家和实施创新驱动发展战略是积极应对全球新一轮科技革命的重大战略选择。毫无疑问,工业4.0是当下变革时代的创新形态和创新产品。从蒸汽时代、电气时代、信息时代到智能时代,技术的发展推动了时代的变革、治理的革命和社会的进步。智能平台、智能工厂、智能产品、智能服务的不断涌现将推动智慧企业、智慧政府和智慧社会的形成。在工业4.0中国版——《中国制造2025》的护航下,实现中国由制造大国驶向制造强国的转变指日可待。
品牌:中国社会科学出版社
上架时间:2016-12-01 00:00:00
出版社:中国社会科学出版社
本书数字版权由中国社会科学出版社提供,并由其授权上海阅文信息技术有限公司制作发行
工业4.0:智能制造与治理革命最新章节
查看全部陈潭等
主页
同类热门书
最新上架
- 会员
科学仪器设备配置学:人工智能时代的界面管理
本书共八章,从高校资源配置的教育、科研、社会、经济规律视角,以建设卓越世界一流大学为导向,对高校科学仪器设备配置中的问题进行研究。计算机17.5万字 - 会员
向AI提问的艺术:提示工程入门与应用
本书共十一章,主要包含四部分:第1章解读ChatGPT的基础原理和提示工程的基本概念;第2至5章介绍提示工程技巧,涵盖有效提示编写、针对复杂任务的提示设计技巧、对话中的提示设计技巧,以及提示的优化与迭代;第6章主要介绍当前ChatGPT推出的进阶功能;第7至11章结合教育领域、市场营销、新媒体运营、软件开发和数据分析实战展示提示工程技巧的应用。计算机12.9万字 - 会员
预训练语言模型:方法、实践与应用
近年来,在自然语言处理领域,基于预训练语言模型的方法已形成全新范式。本书内容分为基础知识、预训练语言模型,以及实践与应用3个部分,共9章。第一部分全面、系统地介绍自然语言处理、神经网络和预训练语言模型的相关知识。第二部分介绍几种具有代表性的预训练语言模型的原理和机制(涉及注意力机制和Transformer模型),包括BERT及其变种,以及近年来发展迅猛的GPT和提示工程。第三部分介绍了基于Lang计算机12.7万字 - 会员
巧用ChatGPT快速提高职场晋升力
本书共分为10章,从ChatGPT的基本知识、技术原理和应用场景出发,探讨了如何运用ChatGPT提升职场竞争力。计算机11.4万字 - 会员
AI文案高手速成118例:提问生成+修改润色+热门模板+应用案例
全书通过118个实用技巧讲解+118集教学视频演示+160多个素材回复文件+144页PPT教学课件,通过“提问生成+修改润色+热门模板+应用案例”4大专项内容,帮助小白快速成为AI文案高手!本书具体内容包括16种AI提问技巧、13种指令优化技巧、11种高效提问技巧、9种文案修改技巧、7种文案润色方法、11类营销文案指令模板、12类办公文案指令模板、13类自媒体文案指令模板、12类教育学术文案指令模计算机11.6万字 - 会员
AI时代程序员开发之道:ChatGPT让程序员插上翅膀
本书从介绍“ChatGPT第一次接触”开始,分析如何使用该工具来提高开发效率和质量。书中每一章都涵盖了ChatGPT的不同应用场景,从编写各种文档,到辅助进行需求分析和系统设计,以及数据库设计和开发高质量代码等均有讲解。还介绍了如何使用ChatGPT辅助进行系统测试以及任务管理,并对源代码底层逻辑进行了分析。计算机8.8万字 - 会员
MindSpore科学计算
本书全面、系统地探讨科学计算的背景、机器学习的重要性以及昇思MindSpore框架在科学计算中的广泛应用。科学计算作为一门交叉学科,融合了数学、计算机科学与技术等领域的专业知识,在现代科学研究和工程实践中起着关键作用。本书以MindSpore为平台,深入研究这一全场景AI框架在科学计算中的探索与实践,通过对基础理论、行业应用和实际案例的详细介绍,为读者提供全方位的学习和参考资料。全书共8章,首先详计算机15.7万字 - 会员
人工智能算法基础
本书分为4章,共20章。其中第1篇为基础算法篇,从第1章到第9章,讲述排序、查找、线性结构、树、散列、图、堆栈等基本数据结构算法;第2篇为机器学习算法篇,从第10章到第14章,讲述分类算法、回归算法、聚类算法、降维算法和集成学习算法;第3篇为强化学习算法篇,从第15章到第16章,讲述基于价值的强化学习算法和基于策略的强化学习算法;第4篇为深度学习算法篇,从第17章到第19章,讲述神经网络模型算法、计算机0字 - 会员
Keras深度学习与神经网络
本书从人工智能导论入手,阐述人工智能的发展及现状,重点介绍了机器学习和神经网络基础、反向传播原理、卷积神经网络和循环神经网络等内容。本书内容由浅入深,循序渐进,从神经元和感知机入手,逐步讲解深度学习中神经网络基础、反向传播以及更深层次的卷积神经网络、循环神经网络。本书知识体系完整,内容覆盖面广,介绍了深度学习中常用的模型和算法,助力读者多方位掌握深度学习的相关知识。本书可作为高等院校计算机等相关专计算机11万字