![MATLAB矩阵分析和计算](https://wfqqreader-1252317822.image.myqcloud.com/cover/872/26542872/b_26542872.jpg)
上QQ阅读APP看书,第一时间看更新
2.5 依克莱姆法则解线性方程组
含有n个未知量的n个方程的线性方程组取如下形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8249.jpg?sign=1739148729-hWv5RHy6vl3PdZX3LzzEWcbUtlIwO8IY-0-14b1c93d3334c5a25d30910978fa8796)
当常数项b1,b2,…,bn不全为零时,式(2-3)称为非齐次线性方程组。
如果记
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8250.jpg?sign=1739148729-LCDsHGg6y7OHWgwHYw5kOtWaENfwYLbn-0-ca9ce6c01336d29b56cabe8fd5fd150d)
式中,T表示转置,那么线性方程组(2-3)可写成矩阵形式:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P31_8252.jpg?sign=1739148729-GRnVKZuxAuQulXaCfCohGHQeZY57fCYc-0-129821d95683848a374dcb7c775e7073)
此方程组有两种解法:逆矩阵法和克莱姆法则。
1. 逆矩阵法
当|A|≠0,即A的行列式不为0时,线性方程组(2-4)的解为
x=A-1b
式中,A-1是系数矩阵A的逆矩阵,x称为方程组(2-4)的解向量。
2. 克莱姆法则
若|A|≠0,线性方程组(2-3)的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8270.jpg?sign=1739148729-mOOLVmh4arr89upDoKWwL4UL7tU8fNpf-0-e024af80d4707616e8e5e9c2e233d0d5)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8272.jpg?sign=1739148729-ysN4imfvgU7IolPoADt98SUetFoHzr0o-0-851c34715a8d19ba74f3c759ae7fe2f2)
这里Δj(j=1,2,…,n)是以常数项向量b替换A中第j列向量后得到的n阶行列式。
特别地,二阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8274.jpg?sign=1739148729-BEX5aioqBixhXrQgmK4APKMDa7UXfKQC-0-c1aabfbad5a764abe76a2f4024ed955e)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8275.jpg?sign=1739148729-f6qeFZaVpp4roxSwABBdPCr8mKDRzz4M-0-17498a8f8f152fa8da01525e59779b13)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8276.jpg?sign=1739148729-3zIy1KghC2BZMByQwhKe3goqcRrsj8RQ-0-c73556b4e18384d5816a2735939c7815)
三阶线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_1430.jpg?sign=1739148729-GmxNek84CYIbh3fL5J9SrJCyONs1r6SK-0-caf3666c85a59b22470f38f765b42b5a)
的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8277.jpg?sign=1739148729-1IniJ6Nmz4zqMI5G85Rmh0vE2LiOgxgw-0-382f93c7c702eecc26292bf7a70d74e9)
式中
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P32_8278.jpg?sign=1739148729-EMZalUW1MpOlVJfnc0x3VaFYzaWtZutR-0-dced1b1fd6ff4b5da61a98aa9a656cb0)
【手工计算例12】 解以下三元一次线性方程组
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8282.jpg?sign=1739148729-uQclii9lvfZaVPUwstxXF75mx8QqFTkw-0-cce9c15e6b0535aa6ed1e3a82193db0b)
解:
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8285.jpg?sign=1739148729-Sv65u790Nxn9iNL6ehJV3niVK7eHKAPV-0-7c4cc6f0f1f5cd6659579ee8bb9de485)
所以
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_8286.jpg?sign=1739148729-F0NSLPtlLdwmWHRije5oLjcCwzQF6YUk-0-3895757e3c4338d0b6fc4cf6b9c45c4f)
故,原方程组的解为
![](https://epubservercos.yuewen.com/19ACC0/15056704704179306/epubprivate/OEBPS/Images/Figure-P33_1566.jpg?sign=1739148729-HvnMp1Nus4PwBuU94VbGO6oxDLT5Dxy6-0-b5a2c467ab275814c9a72b7b22488f3f)