文化伟人代表作图释书系:几何原本
上QQ阅读APP看书,第一时间看更新

三、《几何原本》介绍

在《几何原本》中,欧几里得首先给出了点、线、面、角、垂直、平行等定义,接着给出了关于几何和量的十条公理,如“凡直角都相等”“整体大于部分”,以及后来引起许多纷争的“平行线公理”等。公理后面是一个一个的命题及其证明,内容丰富多彩。比如有平面作图、勾股定理、余弦定理、圆的各种性质,空间中平面和直线的垂直、平行和相交等关系,平行六面体、棱锥、棱柱、圆锥、圆柱、球等问题,此外还有比例的理论、正整数的性质与分类、无理量等。公理化结构是近代数学的主要特征,而《几何原本》则是公理化结构的最早典范。欧几里得创造性地总结了他以前的古希腊人的数学,将零散的、不连贯的数学知识整理起来,加上自己的大量创造,构建出彼此有内在联系的有机的宏伟大厦。

本书共分13卷,有5条公设、5条公理、119个定义和465个命题,构成了历史上第一个数学公理体系。

关于重要命题 《几何原本》中涉及诸多重要命题,比如命题I.47就是著名的“勾股定理”。传说这一定理最早是由毕达哥拉斯证明出的,但他的证明方法却没有流传下来。而《几何原本》中的证明,则可以算是现存西方最早证明勾股定理的记载。

关于命题的逻辑关系 《几何原本》中命题间的逻辑关系甚至比现代教科书还高。为了清晰地表明这一关系,千余年来的各种语文版本多附有数学家们对逻辑关系的注解。

关于公理或公设 演绎法,其基本精神是由简单现象去证明较复杂的现象,在数学中同样也遵循这一原理。在这一理论里,逻辑推理虽然至关重要,但更重要的是,我们必须接受一些简单的现象作为我们的“起点”,是明显的“自明”道理,而欧几里得将这些“起点”命名为“公设”或“公理”。

虽然以公理为起点演绎几何的方法并非为欧几里得首创,其首创应该是他之前的泰勒斯,但是《几何原本》中的公设或公理,全部由欧几里得所创造和筛选。这一天才的智力令人叹为观止!

关于第5公设及非欧几何学 欧几里得的不完美催生了新的几何学,这是从第5公设开始的。第5公设不同于其他9条,言语迟钝,仿佛有些力不从心的样子。形式上也不像公设,倒像一个命题。因此,自《几何原本》诞生后,就有无数的数学家研究这条公设,并试图找出证明这条公设的方法。可惜,一直以来,他们的尝试都归于失败!到了19世纪,波尔约波尔约:(1802—1860年),匈牙利数学家,非欧几何创始者之一。其最大成就是独立创建绝对几何。和罗巴切夫斯基罗巴切夫斯基:(1792—1856年),俄国数学家,非欧几何的早期发现人之一。其主要著作有《平行线理论的几何研究》《论几何学》等。分别发表了一套与第5公设相反的几何体系,从而证明了第5公设确实是一条“公设”,不能被证明或否定。与此同时,这两位数学家亦为我们带来一个全新的数学世界——非欧几何学。

关于圆面积及球体体积公式,《几何原本》中并没有圆面积或球体体积的计算公式,但在第12卷中,可以找到一些相关命题。在欧几里得之后,另一个希腊天才阿基米德提出球体体积公式。阿基米德应用了一种近乎于现代微积分的计算手法,推算出有关的算式,并成功地计算出圆周率小数后两位的数值。