
四、统计分析法
统计分析法是将过去施工中同类工程或生产同类产品的工时消耗、材料消耗、机械台班消耗的统计资料,考虑当前施工技术、施工条件、施工组织的变化因素进行统计分析研究制定定额的方法。统计分析法可以为编制人工定额、材料消耗定额、机械台班定额提供较可靠的数据资料。
统计分析法的计算方法主要有二次平均法和概率测算法两种。
1.二次平均法
统计分析资料反映的是工人过去已经达到的水平。在统计时没有剔除施工中不合理的因素,因而,这个水平偏于保守。为了克服统计分析资料的这一缺陷,使确定的定额水平保持平均先进的水平,可以用二次平均法计算出平均先进值,作为确定定额水平的依据。
二次平均法的计算公式及步骤如下:
(1)剔除不合理的数据。剔除统计资料中特别偏高或偏低的不合理数据。
(2)计算平均数。计算公式为

式中 n——数据个数;
——平均数;
ti——统计数值(i=1,2,3, …, n)。
(3)计算平均先进值。将数列中小于平均值的各数值与平均值相加(求时间定额),或将数列中大于平均值的各数值与平均值相加(求产量定额),然后再求其平均数,即求第二次平均数。其计算公式为:
1)求时间定额的二次平均值。

式中 ——二次平均后的平均先进值;
——全数平均值;
——小于全数平均值的各个数值的平均值。
2)求产量定额的二次平均值。

式中 ——二次平均后的平均先进值;
——全数平均值;
——大于全数平均值的各个数值的平均值。
【例2-10】有一工时消耗统计数组:40,60,70,70,70,60,50,50,60,60。试求平均先进值。
解:求第一次平均值为

求先进平均值为

求二次平均先进值为

因此,52.84既可作为这一组统计资料整理优化后的数值,也可作为确定定额的依据。
2.概率测算法
用二次平均法计算出的结果,一般偏向于先进,可能多数工人达不到,不能较好地体现平均先进的原则。概率测算可以运用统计资料计算出有多少百分比的工人可能达到,作为确定定额水平的依据。其计算公式及步骤如下:
(1)确定有效数据。对取得某施工过程的若干次工时消耗数据进行整理分析,剔除明显偏低或偏高的数据。
(2)计算工时消耗的平均值。

式中 n——数据个数;
t——平均数;
ti——统计数值(i=1,2,3, …, n)。
(3)计算工时消耗数据的样本标准差。

式中 S——样本标准差;
n——数据个数;
xi——工时消耗数据(i=1,2,3, …, n);
t——工时消耗平均值。
(4)运用正态分布公式确定定额水平。根据正态分布公式得出的确定定额的公式为
t=t+λS
式中 t——定额工时消耗;
t——工时消耗算术平均值;
λ——S的系数,从正态分布表(表2-16)中可以查到对应于λ值的概率P(λ);
表2-16 正态分布表

S——样本标准差。
【例2-11】已知某施工过程工时消耗的各次统计值为40,60,70,70,70,60,50, 50,60,60(同例2-10),试用概率测算法确定86%的工人能够达到的定额值和超过平均先进值的概率各为多少。
解:(1)求算术平均值:

(2)计算样本标准差:

确定使86%的工人能够达到的工时消耗定额,由正态分布表(表2-16)可查到,当P(λ)=0.86时,λ=1.1,故使86%的工人能够达到的工时消耗定额为

(3)确定能超过平均先进值的概率:
由例2-10求出的平均先进值为52.84,计算出能达到此值的概率:

查表2-16得P(-0.62)=0.264,即只有26.4%的工人能达到这个水平。