![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.1 第一重要极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034001.jpg?sign=1738871571-qCrMVExhauMVG5KRedOxjYzymEiWoMOw-0-761df4818cacc47a0549bed81c3f43eb)
为了更好地理解第一重要极限,先给出如下夹逼定理.
定理(夹逼定理) 如果,
,且
G(x)≤f(x)≤F(x),
则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034004.jpg?sign=1738871571-6kzlBU5EdGTlkwCIUrhJ50S05BqPnmNg-0-d47a1af6c349a87b97a075644a8fdb79)
从直观上可以看出,该定理是很明显的.当x→x0时,f(x)的左、右函数G(x)和F(x)的极限都同时无限趋近于常数A,则会“逼迫”中间函数f(x)也无限趋近于常数A.
下面根据该定理证明第一重要极限.
作单位圆,如图1-22所示,取圆心角∠AOB=x,令x→0+,不妨假设2.由图可看出,S△AOB<S扇AOB<S△AOD,即
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034006.jpg?sign=1738871571-lcYN0T0Q2ImP9DXP1Q4czfLb1mz5VneX-0-41470786b853614686b20ad2d3516107)
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034007.jpg?sign=1738871571-BvG24e3f63hRKuoQ4sGYn1jYzC9M5xzI-0-bd78dd1df2b43da3489234762f277dda)
图 1-22
从而有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034008.jpg?sign=1738871571-R8eZgqCrqOfnMCKkRk7sht2d2pAQkL6O-0-4b2a6e8b5a7f826e11c73aba90f137c9)
取倒数
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034009.jpg?sign=1738871571-nuapRPkptQf6AjtFLgHadRQjpQMQlixl-0-6fe51eb8d9b664b6cf3f7befd52b05dc)
因为,根据本节定理,证得
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034011.jpg?sign=1738871571-Bdnb8tdTTbHP2zy7YytWcmkqjlP8NAUM-0-005f0eaeae41100e979b78f6c0ef517b)
又因为cosx和x均是偶函数,所以当x→0-,即对于
,结论仍成立,
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034014.jpg?sign=1738871571-zN6wzNv0Nkm5xgUS08fcmTgWWEN2Vuzs-0-017974ba8e42e88ee3d5ca1218715237)
由§1.2节定理2,有
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00034015.jpg?sign=1738871571-CBnsBIEzQEDfoVjJMstINi8gjDydpzOG-0-16556c11418f09051d777e24a858a9bf)
第一重要极限公式(1-1)在极限运算中有重要的作用,要较好地掌握它,必须认清它的特点.
发现:(1)极限是 型,且含有正弦函数;
(2)极限为类型 或x→∞时,□→0,其本质为:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035003.jpg?sign=1738871571-uFclm2dAzrWf4b4rBS4tTTPu2etubZd9-0-73b164756dc8172855b5604d3dbf92d2)
例1 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035005.jpg?sign=1738871571-12i5K2QiQ9WvgDJoTfjZozkfBPV5PPXE-0-4ca8a019d7ab47c765a85d938a3e55b2)
例2 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035007.jpg?sign=1738871571-CIQu9xVc2sGoi91egVOWj3LWJOnRexj7-0-6c623cd78428d6c7fbde586d0a9558ee)
例3 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035009.jpg?sign=1738871571-zzovKnEGeLmit884FOC0WqzDoWIbzeRC-0-b754055d0ebafd8081e6e73124c90e93)
例4 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035011.jpg?sign=1738871571-YQN2NrlstLAavw1Wk6pLWjvJftqCwmzD-0-da03b10750c81c23ef9467816a113160)
例5 证明
证明 令arcsinx=t,则x=sint,当x→0时,t→0,则
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035013.jpg?sign=1738871571-CpKOUU5uXb2sJa2R5bdtDEyR44ZXOUW5-0-cb72800a70750976f3e50bc223fc199a)
发现:(1) ;(2)
;(3)
;(4)sinkx≠ksinx.