![高等应用数学](https://wfqqreader-1252317822.image.myqcloud.com/cover/247/26179247/b_26179247.jpg)
上QQ阅读APP看书,第一时间看更新
1.4.2 第二重要极限
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035017.jpg?sign=1738871186-uFEZPd2th85xR89M6UuBtUTH9Lrvk4qU-0-1908f6005210493907685ec83e0fad3a)
可以假设自变量x取正整数n,计算出相应的函数值,列表进行观察来理解第二重要极限(1-2).
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00035019.jpg?sign=1738871186-PUjLHXp5RlAnJXt2fpkt6STR1VyOzPuN-0-f56b50cdb341d32260ac51cc00fe524c)
通过观察发现,当n→∞时,→e,其中e为无理数,它的值为
e=2.71828182845….
与第一重要极限同样重要,要较好地掌握第二重要极限,必须认清它的特点.
发现:(1)函数 的底数、指数均有变量,称为幂指型函数,其中存在倒数关系;
(2)极限 ,当x→x0或x→∞时,□→∞,其本质为:
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036004.jpg?sign=1738871186-4ZiHA3gs0OzpIzmjcBQ4bdePeRLDcXEa-0-378730cc3a1d26a0519e07633eb1fb8e)
利用代换 ,当x®∞时,z®0,第二重要极限(1-2)又可以写成
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036006.jpg?sign=1738871186-Sn0xT7xA75T3uy3kCJQAaq2coB704W4P-0-50b0e3743b66e6b64b5eb788cb1e5358)
(3)极限属于1∞型,以后遇到1∞型的极限可考虑是否属于第二重要极限.
例6 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036008.jpg?sign=1738871186-Kzu6RHz5vwDA5oSaF32fFSbd94pIKyLe-0-84061b2d9a6eb931cb8463b8687c3d83)
例7 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036010.jpg?sign=1738871186-zxWbupG0KGqncfnq4KJU8SUxCF7Uo49r-0-82e4ea16e695af660b52aa48de1b95ce)
例8 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036012.jpg?sign=1738871186-7siAyvjVX4qHiRsDHujsBVuoLEDrEyeg-0-90f75c5ea534fa10e5af02a36e091155)
例9 求
![](https://epubservercos.yuewen.com/C83605/14615860104561706/epubprivate/OEBPS/Images/img00036014.jpg?sign=1738871186-P7ROlC7Rb6jQggAYX0yrjdW5HNW7tKsQ-0-323e956aab23aaac530aa6cf05e0123d)